EE 505

Lecture 17

Current Steering DACs

Current Steering DACs

Reduced Resistance Structure

$3 n+1$ cells

Is the R-2R structure smaller?
Does the R-2R structure perform better?
What metric should be used for comparing performance?

Review from Last Lecture

Performance of Thermometer Coded vs Binary Coded DACs

Conventional Wisdom:

- Thermometer-coded structures have inherently small DNL
- Binary coded structures can have large DNL
- INL of both structures is comparable for same total area

Comparison of Thermometer Coded and Binary Coded DACs

Example: $\mathrm{n}=10$
String DAC

Resistor Sigma $=14.14 \Omega$

Low DNL and random walk nature should be apparent

Comparison of Thermometer Coded and Binary Coded DACs

Example: $\mathrm{n}=10$
$\mathrm{A}_{\mathrm{R}}=0.02 \mu \mathrm{~m}$
String DAC

INLkmax_mean =-2.11116e-05
INLkmax_sigma $=0.226783$

Histogram of $\mathrm{INL}_{\text {kmax }}$ from 100,000 runs
Appears to be Gaussian

Comparison of Thermometer Coded and Binary Coded DACs

Example: $\mathrm{n}=10$
String DAC

INLmean $=0.384382$
INLsigma $=0.117732$

Histogram of INL from 100,000 runs
Not Gaussian

Comparison of Thermometer Coded and Binary Coded DACs

Example: $\mathrm{n}=10$
Binary DAC

Resistor Sigma $=14.14 \Omega$

Large DNL bit INL does not appear to be much different than for string DAC

Comparison of Thermometer Coded and Binary Coded DACs

Example: $\mathrm{n}=10$

$\mathrm{A}_{\mathrm{R}}=0.02 \mu \mathrm{~m}$
$\mathrm{R}_{\mathrm{N}}=1 \mathrm{~K}$

Resistor Sigma $=14.14 \Omega$
Both structures have essentially the same area

String DAC

Binary DAC

Histogram of INL from 100,000 runs
Since mathematical form for PDF is not available, not easy to analytically calculate yield

Review from Last Lecture

Comparison of Thermometer Coded and Binary Coded DACs

Example: $\mathrm{n}=10$

$\mathrm{A}_{\mathrm{R}}=0.02 \mu \mathrm{~m}$ $\mathrm{R}_{\mathrm{N}}=1 \mathrm{~K}$

Resistor Sigma $=14.14 \Omega$

Both structures have essentially the same area
String DAC

```
Resolution = 10
AR = 0.02
Rnom = 1000
Area Unit Resistor = 2 }\mu\mp@subsup{\textrm{m}}{}{2
INLkmax mean =-2.11116e-05
INLmean 0.384382
INLtarget = 0.5000
```

Nruns $=100000$
Resistor Sigma= 14.1421
INLkmax sigma $=0.226783$
INLsigma 0.117732
Yield(\%) $=84.0120$

Binary DAC

> Resolution $=10$ Rnom $=1000$ INLmean 0.367036
$\mathrm{AR}=0.02$
Rnom $=1000 \quad$ Area unit resistor $=2 \mu \mathrm{~m}^{2}$
INLkmax mean $=0.000130823$
DNL mean $=0.46978$
INLtarget $=0.5000$

Nruns $=100,000$
Resistor Sigma=14.1421
INLsigma 0.128294
INLkmax sigma $=0.226276$
DNLsigma $=0.227768$
Yield (\%) $=84.8580$

Current Steering DACs

Segmented Resistor Arrays

- Combines two types of architectures
- Can inherit advantages of both thermometer and binary approach
- Minimizes limitations of both thermometer and binary approach

Current Steering DACs

Reduced Resistance Structure

Is it better to use series unary cells to form R or parallel unary cells to form $\frac{R}{2^{n}}$?

$2^{n}-1$ cells

for n odd $2^{\frac{n+3}{2}}-3$ cells

$2^{n}-1$ cells

n	Series	Parallel	Split	
$\mathbf{3}$		$\mathbf{7}$	7	5
$\mathbf{5}$		31	31	13
$\mathbf{7}$		127	127	29
$\mathbf{9}$		511	511	61
$\mathbf{1 1}$		2047	2047	125
$\mathbf{1 3}$		8191	8191	253
$\mathbf{1 5}$		32767	32767	509

Comparison of Thermometer Coded and Binary Coded DACs

Example: $\mathrm{n}=10$
$\mathrm{A}_{\mathrm{R}}=0.02 \mu \mathrm{~m}$
$\mathrm{R}_{\mathrm{N}}=1 \mathrm{~K}$

String (Unary)

INLkmax_mean $=-.00526008$
INLkmax_sigma $=0.23196$

- Closed-Form Analytical Formulation Available

Resistor Sigma $=14.14 \Omega$
Binary DAC

INLmean $=0.368441$
INLsigma $=0.126133$

- No Closed-Form Analytical Formulation

Comparison of Thermometer Coded and Binary Coded DACs

String (Unary)

Binary DAC

Histogram of INL

These plots may be useful for providing insight into performance

Comparison of Thermometer Coded and Binary Coded DACs

Example: $\mathrm{n}=10$
Binary DAC

Histogram of INL from 1000 runs

Resistor Sigma $=14.14 \Omega$
Binary DAC

Histogram of INL from 100,000 runs

Can require a large number of runs for useful information

The R-2R Ladder

R-2R Resistor Arrays

- Conceptually, area goes up linearly with number of bit slices
- Can be used in many different ways

R-2R DAC

(4-bits shown)

By superposition:

$$
V_{O U T}=V_{R E F} d_{3} \cdot \frac{1}{2}+V_{\text {REF }} d_{2} \cdot \frac{1}{4}+V_{\text {REF }} d_{1} \cdot \frac{1}{8}+V_{\text {REF }} d_{0} \cdot \frac{1}{16}=V_{R E F} \sum_{k=0}^{3} \frac{d_{k}}{2^{4-k}}=V_{\text {REF }} \sum_{k=1}^{4} \frac{d_{4-k}}{2^{k}}
$$

- No op amp required !!
- 2:1 Ratio matching of MSB slice most critical
- Total resistance goes up linearly with number of bit slices !!
- Conventional wisdom: area goes up linearly with number of bit slices
- Does conventional wisdom result in optimal designs?

R-2R DAC

Limitations:

- Parasitic capacitances on all nodes must settle during all transitions
- Switch impedances imbalance 2R cells
- Analogous to top-plate switching
- Output impedance not 0 Is the output impedance code dependent?

Large steps in output can occur How should area be allocated?

R-2R Implementation

- Add resistor equal to nominal switch impedance in each unswitched cell
- Impedance equal to the nominal switch impedance
- Offers some improvement, particularly if all switches are bottom-plate switches (but for previous R-2R structure do not have all bottom-plate switches)
- Will not track with temperature and process variations

R-2R Implementation

- Unit cell widely used
- Switch included in cell even if not switched!
- Code dependence of switch impedance of concern (this can be addressed)
- Delays associated with turning on switches also of concern since some cells not referenced to same level as switches

R-2R Current Steering DAC

- INL can get large in R-2R structures
- DNL can get large in R-2R structures

Sub-radix Array

$$
\text { Typically } \quad 2.1<\theta<2.5
$$

Termination resistor must be selected so that same attenuation is maintained Often only the first n_{1} MSB "slices" will be sub-radix

Effective number of bits when using sub-radix array will be less than k
Can be calibrated to obtain very low DNL (and maybe INL) with small area

It can be shown that the optimal value of z is given by the expression

$$
z=\frac{3 \theta+1-(1+\theta) \sqrt{1+4 \theta}}{-1+\sqrt{1+4 \theta}-2 \theta}
$$

This derivation is in a file named Termination of Subradix.docx
Derivation based upon assuming the three impedances R_{1} below must be the same

Output of an optimally terminated subradix DAC of 5 bits with $\theta=2.5$ and $\mathrm{z}=1.15831$

See file SubRadix DAC.xslx

Chart Title

θ selected so probability of large positive gap is very small

3-slice sub-radix DAC

Typically θ is slightly greater than 2

Does not eliminate large DNL errors but can eliminate gaps in output

R-2R Resistor Arrays

Does it make any difference how area is allocated?

2R Area twice R Area

R Area twice 2R Area

Area Allocation for R and 2R Resistors

Series Layout

Parallel Layout

2R Area twice R Area

Assume area in each slice if fixed

Area Allocation for R and 2 R Resistors

Yield is affected by both mean and standard deviation of the non-Gaussian pdf
Standard deviation of parallel layout is somewhat more (but uses less cells for n small)
Area allocation between slices also affects yield

Challenges with all R-based DACs

- Switch Impedance
- Contact Resistance
- Variability

Resistor
Contact Resistance
Switch Impedance

- Parasitic Capacitances

Another R-2R DAC

Eliminates series switch resistance when switching resistors
Series resistance in current source does not affect current
Must match both resistors and current sources
Current flow will pull capacitance on switch nodes to low before current sources leave saturation
Current flow will change power dissipation based upon digital code

Another R-2R DAC

Switch will pull capacitance on switch nodes to GND instead of V_{SS}
Power dissipation will not be code dependent

Current Steering DAC

- Switch impedance of little concern
- Bottom-plate switching
- Low DNL
- Decoder impractical for large n

Current Steering Binary DAC

- eliminates decoder
- DNL not good for large n
- area ratio from MSB source to LSB source too large for large n (can make I only so small)

Current Steering Binary DAC

- reduces total current spread of bit cells
- reduces total number of bit cells (since cells are bundeded
- can repeat mirror current attenuator
- can change number of bits in each current attenuator stage

How is performance affected by reducing the number of unary cells? Is too much area allocated to the LSB cells?

Current Steering Binary DAC

- LSB performance not critical
- Limit number of binary attenuators to avoid accumulating too much error

Sub-Radix Current Steering DAC

Typically $1.9<\theta<1.99$ (Depending on ratio-matching accuracy of current sources)
Takes smaller steps so takes more steps to cover range

Current Steering DAC

Current Steering DAC

Bottom plate switching
Is output impedance of current sources of concern?

No! Matching is important but linearity is not

Current Steering DAC

Power dissipation is code dependent

Current Steering DAC

- Current steering instead of current switching
- Power dissipation in current sources remains constant
- Smaller gate voltages can be used to steer current

Differential Amplifier (Analog)

- Dump current can provide differential DAC output

Current Steering DAC

- Parasitic capacitances do not charge and discharge
- Current steering provides inherent cascading
- This structure is a double-cascode

Current Steering DAC

Signal swings only need to be large enough to steer current

Current Steering DAC with Supply Independent Biasing

If transistors on top row are all matched, $\mathrm{I}_{\mathrm{X}}=\mathrm{V}_{\mathrm{REF}} / \mathrm{R}$
Thermometer coded structure (requires binary to thermometer decoder)

$$
\mathrm{I}_{\mathrm{A}}=\left(\frac{\mathrm{V}_{\mathrm{REF}}}{\mathrm{R}}\right) \sum_{\mathrm{i}=0}^{\mathrm{N}-1} \mathrm{~d}_{\mathrm{i}}
$$

Provides Differential Output Currents

Current Steering DAC with Supply Independent Biasing

If transistors on top row are all matched, $\mathrm{I}_{\mathrm{X}}=\mathrm{V}_{\mathrm{REF}} / \mathrm{R}$

$$
V_{A}=\left(-V_{R E F} \frac{R_{A}}{R}\right) \sum_{i=0}^{N-1} d_{i}
$$

Provides Differential Output Voltages

Current Current Steering DAC with Supply Independent Biasing

If transistors on top row are binary weighted

$$
\mathrm{I}_{\mathrm{A}}=\left(\frac{\mathrm{V}_{\mathrm{REF}}}{\mathrm{R}}\right) \sum_{\mathrm{i}=0}^{\mathrm{n}-1} \frac{\mathrm{~d}_{\mathrm{i}}}{2^{\mathrm{n}-\mathrm{i}}}
$$

Provides Differential Output Currents
Does this serve as an MDAC?

surrentinernern

- Many current steering DACs have an output current instead of an output voltage
- Output voltage is often established by steering current to a fixed external resistor (50Ω or 100Ω)
- Most basic current steering architectures with a high output impedance can be used by simply removing the op amp
- Whereas output impedance of current sources was not of major concern when driving a null-port, it can be of major concern for current output
- Speed may improve and power dissipation may decrease in internal circuitry if output is current

Stay Safe and Stay Healthy !

End of Lecture 17

